

MIC-S90-B 304813

Hilti North America Installation Technical Manual Technical Data MI System

Version 1.2 08.2017

Terms of common cooperation / Legal disclaimer

The product technical data published in these Technical Data Sheets are only valid for the mentioned codes or technical data generation methods and the defined application conditions (e.g. ambient temperature load capacity not valid in case of fire, data not valid in support structures when mixed with third party products, values only apply to static loading conditions). Technical data applies to the component only -- suitability and capacity of all other components must be checked separately by the responsible engineer (e.g., other assembly components, attachments, base materials, and building structures).

Suitability of structures combining different products for specific applications needs to be verified by conducting a system design and calculation, using for example Hilti PROFIS software. In addition, it is crucial to fully respect the Instructions for Use and to assure clean, unaltered and undamaged state of all products at any time in order to achieve optimum performance (e.g. avoid misuse, modification, overload, corrosion).

As products but also technical data generation methodologies evolve over time, technical data might change at any time without prior notice. We recommend to use the latest technical data sheets published by Hilti.

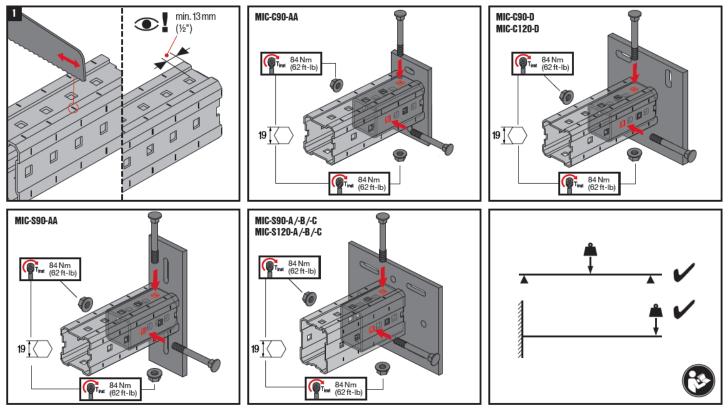
In any case the suitability of structures combining different products for specific applications need to be checked and cleared by an expert, particularly with regard to compliance with applicable norms, codes, and project specific requirements, prior to using them for any specific facility. This book only serves as an aid to interpret the capacity of the components listed, without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application. User must take all necessary and reasonable steps to prevent or limit damage. The suitability of structures combining different products for specific applications need to be confirmed with a professional designer and/or structural engineers to ensure compliance with User's specific jurisdiction and project requirements.

Designation	Item number
MIC-S90-B	304813

Corrosion protection:

Hot dipped galvanized per DIN EN ISO 1461:Connector:2.2 mils (55 μm)Bolt:1.8 mils (45 μm)Nut:1.8 mils (45 μm)

Weight:


18.94 lb (8590 g) incl. components

Description:


Hilti Hot-dipped galvanized baseplate connector, used for connecting a MI-90 girder to a steel beam using M12 mounting hardware. Four slotted holes enable fine tuning of baseplate position, and girder is connected using beam clamps or threaded rod. Comes in different plate sizes to fit various steel beam sizes.

Material properties Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector: S235JR - DIN EN10025-2 2005.4	$f_y = 34.08 \text{ ksi} (235 \frac{N}{mm^2})$	$f_u = 52.21 \text{ ksi} (360 \frac{N}{mm^2})$	29000 ksi (200000 ^{<i>N</i>} / _{<i>mm</i>²})	11000 ksi (75845 <u></u>)
One hand screw, prevail torque hex nut Class 8.8 - DIN EN 1993-1-8	$f_y = 92.82 \text{ ksi} (640 \frac{N}{mm^2})$	$f_u = 116.03 \text{ ksi} (800 \frac{N}{mm^2})$	29000 ksi (200000 $\frac{N}{mm^2}$)	11000 ksi (75845 <u></u>)

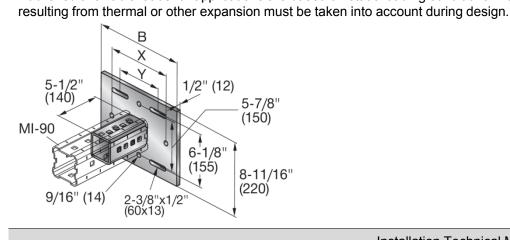
Instruction For Use:

Installation Technical Manual - Technical Data - MI system

Approved loading cases							
Clamped	Boxed						

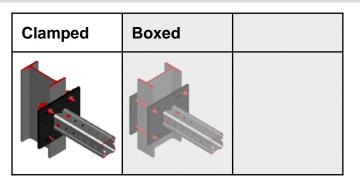
Governing Conditions

Methodology:

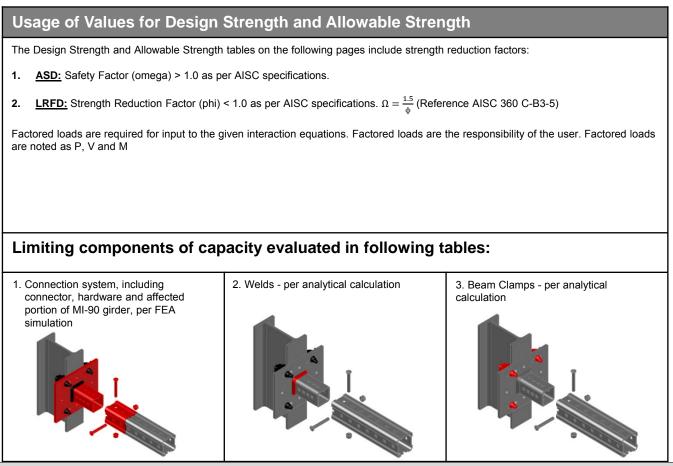

Connection strength values are determined with a combination of simulation (ANSYS[®]), calculation (Microsoft Excel and Mathcad) and testing.

Standards and codes:

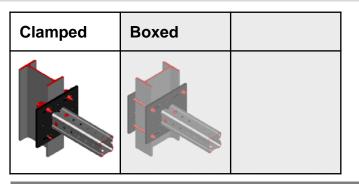
-			
•	ANSI/AISC 360-10	Specification for Structural Steel Buildings	
•	ANSI/AISC 360-10-	Inelastic analysis	
	Appendix 1		
•	AISC Steel Design	Column Base Plates	
	Guide Series 1		
•	AISI S100 - 2007/2010	North American Specification for the Design of cold	
		formed Steel Structural Members	
•	ACI 318-08/11	Building Code Requirement for Structural Concrete	
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1:	03.2012
		General rules and rules for buildings	
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8:	03.2012
		Design of joints	
٠	EN 10025-2	Hot rolled products of structural steels-Part 2: technical	02.2005
		delivery conditions for non-alloy structural steels	


Validity:

Temperature limits: -22°F (-30°C) to 200°F (+93°C). Published allowable loads for applications are based on static loading conditions. Non-static forces, including those



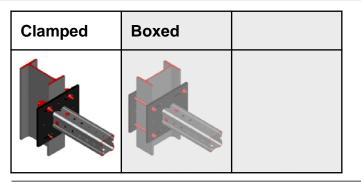
Installation Technical Manual - Technical Data - MI system



Loading case: Clamped	Combinations covered by loading case		
Bill of Material for this loading case: 1x MIC-S90-B 304813 Hardware not included in packaging: Beam clamps 4x MI-SGC M12 233859	Connector used for a perpendicular connection of MI-90 girder to flange of structural steel profiles. For flange width 6.5 " (165mm) - 9.25" (235mm).		

Installation Technical Manual - Technical Data - MI system

Values for Design Strength and Allowable Strength


1/3

NOTE: Calculate interaction separately for each group only using values from that group. Limiter is defined by highest interaction. Use absolute values. Values refer to the coordinate system shown.

1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation

y y z x	LRFD*	+Fx [kip] 8.56 +Mx [kip*ft] 2.10	-Fx [kip] 14.22 -Mx [kip*ft] 2.10	+Fy [kip] 8.09 +My [kip*ft] 1.40	-Fy [kip] 8.09 -My [kip*ft] 1.40	+Fz [kip] 8.09 +Mz [kip*ft] 1.40	-Fz [kip] 8.09 -Mz [kip*ft] 1.40	
	ASD*	+Fx [kip] 5.71 +Mx [kip*ft] 1.40	-Fx [kip] 9.47 -Mx [kip*ft] 1.40	+Fy [kip] 5.38 +My [kip*ft] 0.93	-Fy [kip] 5.38 -My [kip*ft] 0.93	+Fz [kip] 5.38 +Mz [kip*ft] 0.93	-Fz [kip] 5.38 -Mz [kip*ft] 0.93	
	Interactio $\frac{P_{ux}}{F_x} + \frac{V}{R}$ Interactio	$\frac{V_{uv}}{F_y} + \frac{V_u}{F_z}$	$\frac{z}{x} + \frac{M_{ux}}{M_{x}}$	$+\frac{M_{uv}}{M_{y}}+$	$-\frac{M_{uz}}{M_z} \le T$	1		
	$\frac{P_{ax}}{F_{x}} + \frac{V}{H}$ *Values all in accorda	ready incl	ude LRFD	strength i	reduction (Φ) or ASE) factors

2. Welds - per analytical calculation

Values for Design Strength and Allowable Strength

2/3

NOTE: Calculate interaction separately for each group only using values from that group. Limiter is defined by highest interaction. Use absolute values. Values refer to the coordinate system shown.

+Fx -Fx +Fy -Fy +Fz -Fz [kip] [kip] [kip] [kip] [kip] [kip] 11.30 49.72 49.72 11.30 11.30 11.30 LRFD' -Mz +Mx -Mx +My -My +Mz [kip*ft] [kip*ft] [kip*ft] [kip*ft] [kip*ft] [kip*ft] 4.61 4.61 2.45 2.45 2.45 2.45 +Fx -Fx +Fy -Fy +Fz -Fz [kip] [kip] [kip] [kip] [kip] [kip] 33.14 33.14 7.53 7.53 7.53 7.53 ASD* +Mx -Mx +My -My +Mz -Mz [kip*ft] [kip*ft] [kip*ft] [kip*ft] [kip*ft] [kip*ft] 3.08 3.08 1.63 1.63 1.63 1.63 Interaction for LRFD $\frac{P_{ux}}{F_x} + \frac{V_{uy}}{F_y} + \frac{V_{uz}}{F_z} + \frac{M_{ux}}{M_x} + \frac{M_{uy}}{M_y} + \frac{M_{uz}}{M_z} \le 1$ Interaction for ASD: $\frac{P_{ax}}{F_x} + \frac{V_{ay}}{F_y} + \frac{V_{az}}{F_z} + \frac{M_{ax}}{M_x} + \frac{M_{ay}}{M_y} + \frac{M_{az}}{M_z} \le 1$ *Values already include LRFD strength reduction (Φ) or ASD safety (Ω) factors in accordance with AISC, and are based on nominal geometry.

Values for Design Strength and Allowable Strength

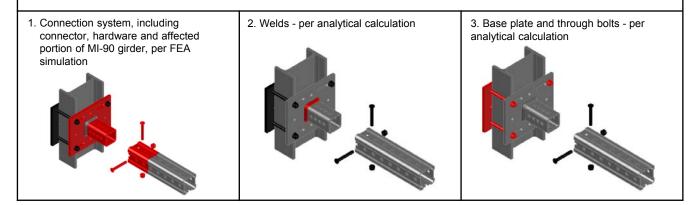
3/3

NOTE: Calculate interaction separately for each group only using values from that group. Limiter is defined by highest interaction. Use absolute values. Values refer to the coordinate system shown.

3. Beam Clamps - per analytical calculation				_
	+Fx -F [kip] [kip		Fy +Fz (ip] [kip]	-Fz [kip]
y x	7.04 No	t 1/9 1	.48 1.48	1.48
	LRFD* +Mx -M	sive	My +Mz	-Mz
Z Z	[kip*ft] [kip*	· · · · · · · · · · · · · · · · · · ·	p*ft] [kip*ft]	[kip*ft]
	0.52 0.5	52 1.50 1.	.50 1.50	1.50
	+Fx -F	x +Fy -I	Fy +Fz	-Fz
î 🔍	[kip] [kip		kip] [kip]	[kip]
	ASD* 4.68 No decis		.99 0.99	0.99
	+Mx -M	,	My +Mz	-Mz
	[kip*ft] [kip'		p*ft] [kip*ft]	[kip*ft]
	0.34 0.3	34 1.00 1.	.00 1.00	1.00
	Interaction for LRFD Normal force interaction	:		₩
	The eccentricity ey and ez betw	-	transfer	
	channel / connector and baseplate bending moment on the system , m			
	interaction formula.			eF
	$\frac{P_{ux}}{F_x} + \frac{V_{uv} * ey}{M_z} + \frac{V_{uz} * ey}{M_v}$	$\frac{m_{uv}}{M} + \frac{M_{uz}}{M} + \frac{M_{uz}}{M}$	<u>-</u> ≤1	
	$F_x M_z M_y$	M _y M _z		
	Shear force interaction:		,	e _z =0.070 m
	 Shear Interaction Equation is <u>only</u> compressive P_{ux} loads (P_{ux} < 0). 	valid for LENSILE P _{ux} lo	oaαs (P _{ux} > 0). Equati	on is <u>not</u> valid for
	- For Shear interaction, user must			
	$\left \left(\frac{V_{uy}}{F_y \times \left(1 - \frac{P_{ux}}{F_y} \right)} \right)^2 + \left(\frac{V_{uy}}{F_y} \right)^2 \right + \left(\frac{V_{uy}}{F_y} \right)^2 + \left(\frac{V_{uy}$	$\frac{V_{uz}}{(P_{uz})}$	$-\frac{M_{ux}}{(P_{ux})}$	$\overline{\chi} \leq 1$
	$\left(\int F_{y} \times \left(1 - \frac{r_{ux}}{F_{x}} \right) \right) = \left(F_{y} \right)$	$F_z \times \left(1 - \frac{T_{ux}}{F_x}\right)$	$M_x \times \left(1 - \frac{T_{ux}}{F_x}\right)$)
	Interaction for ASD:			
	Normal force interaction			
	The eccentricity ey and ez betw channel / connector and baseplate			
	bending moment on the system, m			
	interaction formula. $P_{ax} V_{ay} * ey V_{az} *$	ez M _{av} M _{az}	vith	e _y =e _z =0.070 m
	$\frac{P_{ax}}{F_x} + \frac{V_{av} * ey}{M_z} + \frac{V_{az} *}{M_y}$	$-+\frac{1}{M_{1}}+\frac{1}{M_{2}}$	<u>+</u> _	
	Shear force interaction:	y y z		
	- Shear Interaction Equation is <u>only</u> compressive P _{ax} loads (P _{ax} < 0).	valid for TENSILE P _{ax} lo	oads (P _{ax} > 0). Equati	on is <u>not</u> valid for
	- For Shear interaction, user must	ADDITIONALLY verify: P	P _{ax} / F _x < 1.	
	$\sqrt{\left(\frac{V_{ay}}{F_y \times \left(1 - \frac{P_{ax}}{F_x}\right)}\right)^2 + \left(\frac{1}{2}\right)^2}$	$\frac{V_{az}}{F_z \times \left(1 - \frac{P_{ax}}{F_x}\right)}\right)^2 +$	$+\frac{M_{ax}}{M_x \times \left(1 - \frac{P_{ax}}{F_x}\right)}$	$\frac{1}{2} \leq 1$
	*Values already include LRFD stre	ngth reduction (Φ) or ASI	D safety (Ω) factors	
	in accordance with AISC, and are b	based on nominal geomet	try.	
		Technical Man		al Data MI avat

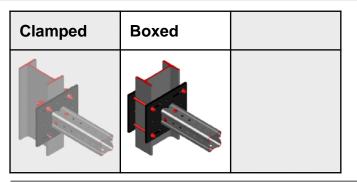
Clamped	Boxed	

Loading case: Boxed	Combinations covered by loading case			
Bill of Material for this loading case: 1x MIC-S90-B 304813 Hardware not included in packaging: Base plate 1x MIB-SB 304822 Threaded rods cut to particular length 4x AM12x1000 8.8 HDGm 419103 Nut 8x M12-F-SL WS3/4 382897	Connector used for a perpendicular connection of MI-90 girder to flange of structural steel profiles. For flange width 6.5 " (165mm) - 9.25" (235mm).			


Usage of Values for Design Strength and Allowable Strength

The Design Strength and Allowable Strength tables on the following pages include strength reduction factors:

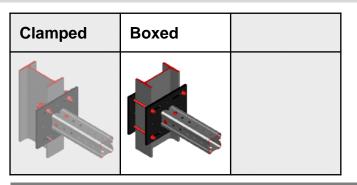
- 1. <u>ASD:</u> Safety Factor (omega) > 1.0 as per AISC specifications.
- 2. <u>LRFD</u>: Strength Reduction Factor (phi) < 1.0 as per AISC specifications. $\Omega = \frac{1.5}{\phi}$ (Reference AISC 360 C-B3-5)


Factored loads are required for input to the given interaction equations. Factored loads are the responsibility of the user. Factored loads are noted as P, V and M

Limiting components of capacity evaluated in following tables:

Installation Technical Manual - Technical Data - MI system

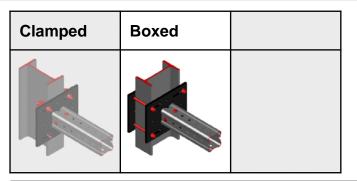
Values for Design Strength and Allowable Strength


1/3

NOTE: Calculate interaction separately for each group only using values from that group. Limiter is defined by highest interaction. Use absolute values. Values refer to the coordinate system shown.

1. Connection system, including connector, hardware and affected portion of MI-90 girder, per FEA simulation

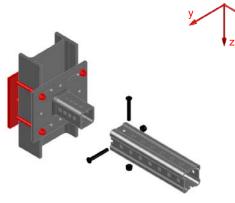
yx	LRFD*	+Fx [kip] 9.03 +Mx [kip*ft] 2.10	-Fx [kip] 14.22 -Mx [kip*ft] 2.10	+Fy [kip] 8.09 +My [kip*ft] 1.40	-Fy [kip] 8.09 -My [kip*ft] 1.40	+Fz [kip] 8.09 +Mz [kip*ft] 1.40	-Fz [kip] 8.09 -Mz [kip*ft] 1.40	
	ASD*	+Fx [kip] 6.02 +Mx [kip*ft] 1.40	-Fx [kip] 9.47 -Mx [kip*ft] 1.40	+Fy [kip] 5.38 +My [kip*ft] 0.93	-Fy [kip] 5.38 -My [kip*ft] 0.93	+Fz [kip] 5.38 +Mz [kip*ft] 0.93	-Fz [kip] 5.38 -Mz [kip*ft] 0.93	
	$\frac{P_{ux}}{F_x} + \frac{V_{ux}}{F_x}$		$\frac{z}{x} + \frac{M_{ux}}{M_x}$					
	*Values a in accorda						D safety (Ω try.) factors


Values for Design Strength and Allowable Strength

2/3

NOTE: Calculate interaction separately for each group only using values from that group. Limiter is defined by highest interaction. Use absolute values. Values refer to the coordinate system shown.

2. Welds - per analytical calculation +Fx -Fx +Fy -Fy +Fz -Fz [kip] [kip] [kip] [kip] [kip] [kip] 11.30 49.72 49.72 11.30 11.30 11.30 LRFD' -Mz +Mx -Mx +My -My +Mz [kip*ft] [kip*ft] [kip*ft] [kip*ft] [kip*ft] [kip*ft] 4.61 4.61 2.45 2.45 2.45 2.45 +Fx -Fx +Fy -Fy +Fz -Fz [kip] [kip] [kip] [kip] [kip] [kip] 33.14 33.14 7.53 7.53 7.53 7.53 ASD* +Mx -Mx +My -My +Mz -Mz [kip*ft] [kip*ft] [kip*ft] [kip*ft] [kip*ft] [kip*ft] 3.08 3.08 1.63 1.63 1.63 1.63 Interaction for LRFD $\frac{P_{ux}}{F_x} + \frac{V_{uy}}{F_y} + \frac{V_{uz}}{F_z} + \frac{M_{ux}}{M_x} + \frac{M_{uy}}{M_y} + \frac{M_{uz}}{M_z} \le 1$ Interaction for ASD: $\frac{P_{ax}}{F_x} + \frac{V_{ay}}{F_y} + \frac{V_{az}}{F_z} + \frac{M_{ax}}{M_x} + \frac{M_{ay}}{M_y} + \frac{M_{az}}{M_z} \le 1$ *Values already include LRFD strength reduction (Φ) or ASD safety (Ω) factors in accordance with AISC, and are based on nominal geometry.



Values for Design Strength and Allowable Strength

NOTE: Calculate interaction separately for each group only using values from that group. Limiter is defined by highest interaction. Use absolute values. Values refer to the coordinate system shown.

3. Base plate and through bolts - per analytical calculation

II,	ation						
		+Fx [kip]	-Fx [kip]	+Fy [kip]	-Fy [kip]	+Fz [kip]	-Fz [kip]
	LRFD*	10.72	Not decisive	2.25	2.25	2.25	2.25
		+Mx [kip*ft]	-Mx [kip*ft]	+My [kip*ft]	-My [kip*ft]	+Mz [kip*ft]	-Mz [kip*ft]
		0.75	0.75	1.95	1.95	2.16	2.16
		+Fx [kip]	-Fx [kip]	+Fy [kip]	-Fy [kip]	+Fz [kip]	-Fz [kip]
	ASD*	7.13	Not decisive	1.50	1.50	1.50	1.50
	-700	+Mx [kip*ft]	-Mx [kip*ft]	+My [kip*ft]	-My [kip*ft]	+Mz [kip*ft]	-Mz [kip*ft]
		0.50	0.50	1.30	1.30	1.44	1.44

Interaction for LRFD

Normal force interaction:

The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the interaction formula.

$$\frac{P_{ux}}{F_x} + \frac{V_{uv}*ey}{M_z} + \frac{V_{uz}*ez}{M_y} + \frac{M_{uv}}{M_y} + \frac{M_{uz}}{M_z} \le 1$$

Shear force interaction:

with e_v=e_z=0.070 m - Shear Interaction Equation is only valid for TENSILE Pux loads (Pux > 0). Equation is not valid for

compressive P_{ux} loads (P_{ux} < 0). - For Shear interaction, user must ADDITIONALLY verify: $P_{ux} / F_x < 1$.

$$\sqrt{\left(\frac{V_{uy}}{F_y \times \left(1 - \frac{P_{ux}}{F_x}\right)}\right)^2 + \left(\frac{V_{uz}}{F_z \times \left(1 - \frac{P_{ux}}{F_x}\right)}\right)^2 + \frac{M_{ux}}{M_x \times \left(1 - \frac{P_{ux}}{F_x}\right)} \le 1$$

Interaction for ASD:

Normal force interaction:

The eccentricity ey and ez between the point of force transfer channel / connector and baseplate, which generates an additional bending moment on the system , must be taken into account in the interaction formula.

$$\frac{P_{ax}}{F_x} + \frac{V_{ay} * ey}{M_z} + \frac{V_{az} * ez}{M_y} + \frac{M_{ay}}{M_y} + \frac{M_{az}}{M_z} \le 1$$
 with $e_y = e_z = 0.070$ m

- Shear Interaction Equation is only valid for TENSILE Pax loads (Pax > 0). Equation is not valid for compressive P_{ax} loads ($P_{ax} < 0$).

- For Shear interaction, user must ADDITIONALLY verify:
$$P_{ax} / F_x < 1$$

$$\sqrt{\left(\frac{V_{ay}}{F_y \times \left(1 - \frac{P_{ax}}{F_x}\right)}\right)^2 + \left(\frac{V_{az}}{F_z \times \left(1 - \frac{P_{ax}}{F_x}\right)}\right)^2 + \frac{M_{ax}}{M_x \times \left(1 - \frac{P_{ax}}{F_x}\right)} \le 1$$

*Values already include LRFD strength reduction (Φ) or ASD safety (Ω) factors in accordance with AISC, and are based on nominal geometry.

Installation Technical Manual - Technical Data - MI system

In the US: Hilti, Inc. (U.S.) P.O. Box 21148 Tulsa, OK 74121 Customer Service: 1-800-879-8000 en español: 1-800-879-5000 Fax: 1-800-879-7000

www.us.hilti.com

Hilti is an equal opportunity employer Hilti is a registered trademark of Hilti, Corp. ©Copyright 2017 by Hilti, Inc. (U.S.)

In Canada:

Hilti (Canada) Corporation 2360 Meadowpine Blvd. Mississauga, Ontario, L5N 6S2 Customer Service: 1-800-363-4458 Fax: 1-800-363-4459

www.hilti.ca

The data contained in this literature was current as of the date of publication. Updates and changes may be made based on later testing. If verification is needed that the data is still current, please contact the Hilti Technical Support Specialists at 1-800-879-8000 (U.S.) or 1-800-363-4458 (Canada). All published load values contained in this literature represent the result of testing by Hilti or test organizations. Local base materials were used. Because of variations in materials, on-site testing is necessary to determinate performance at any specific site.